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L-Sign: Large-Vocabulary Sign Gestures
Recognition System

Zhiwen Zheng, Qingshan Wang

Abstract—Understanding sign gestures is an essential step to
helping individuals with hearing impaired. The existing works can
only identify a small set of gestures accurately and the accuracy
rate drops sharply with an increasing number of gestures. Because
there are two challenges—a large number of similar gestures in
sign language and the various signing speed of different peo-
ple. Based on commercial smart bracelets, this article proposes a
large-vocabulary sign language recognition system (which we call
L-sign). First, we propose an entropy-based forward and backward
matching algorithm to segment each gesture signal. Second, we
design a gesture recognizer including a candidate gesture genera-
tor and semantic-based voter. The candidate gesture generator is
aimed at providing candidate gesture designs based on a 3-branch
convolutional neural network. The purpose of a semantic-based
voter is to select the target gesture from candidate gestures by
scoring, where the semantic distances between the last gesture in
the current sentence and any candidate gestures is calculated, and
a multilayer k-means algorithm is proposed to obtain a multilayer
sign word structure to complete the scores of candidate gestures.
Lastly, we deployed L-sign on the MYO bracelet. For 200 commonly
used Chinese sign gestures, the experimental results show that the
average accuracy rate was greater than 90%.

Index Terms—Gesture, multilayer word structure, recognition,
semantic distance, sign.

I. INTRODUCTION

CCORDING to the latest sampling survey by the World

Health Organization, more than 466 million people cur-
rently suffer from hearing loss as a result of a disability. The
WHO projects this number could increase to more than 630
million by 2030 [1]. These hearing-impaired individuals suffer
from communication barriers daily, which can cause their in-
ability to study, enjoy their lives, and seek medical treatment in
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the same way as those with normal hearing [2]-[4]. It is urgent
to help those with hearing impaired to communicate with people
with normal hearing.

Individuals with hearing impaired communicate with each
other using sign gestures, which are difficult for people with
normal hearing to understand. (In this article, “gesture” means
hand motions corresponding to a sign language word). Thus,
we propose a large-vocabulary Chinese universal sign gesture
recognition system (which we call L-sign) to help individuals
with hearing impaired.

The current research on sign language recognition can be
divided into two groups, according to the means of signal acqui-
sition: visual-based group and sensors-based group. The former
was first utilized in the works of sign language recognition.
This method recognizes sign language by processing pictures
or video recordings of signers [5], [6]. The signer stands in front
of a camera and performs sign gestures. At first, this method
utilized a front view camera and a head-mounted camera to
record and collect the signer’s sign gesture data [7]. Later on, this
method evolved to deploy multifunction cameras. For example
in the study [5] and [8], the depth camera is utilized to capture
the 3-D information of the signer’s hand. These visual-based
methods can recognize about 40 sign gestures. In recent studies,
some commercial devices such as Kinect [6], [9], [10] and
LeapMotion Controller [11], [12] are utilized in sign language
recognition. This method has characteristics of high average
accuracy and low deployment cost. However, the utilization
of camera equipment often violates the privacy of those with
hearing impaired.

In sensor-based approaches, various sensors are fixed to the
signer’s finger, wrist, arm, and other parts for capturing infor-
mation when the signer performs gestures. These sensors are
portable, rich in data, and stable in signal transmission, including
surface electromyography (SEMG) signal sensors [13]-[15],
acceleration sensors [16], [17], and gyroscopes [18]. In [14],
the sensor is placed on the signer’s wrist. When the signer
signs, the sensor detects the surface muscle and the current
signal of the signer’s skin to identify the sign language. For
40 most commonly utilized gestures, this system can achieve
a 95.94% recognition rate. Recently, smartwatches [19] are
also being utilized for sign language recognition. For example,
SignSpeaker [19] is deployed on smartwatches together with
smartphones to recognize 103 commonly used American sign
gestures. In these approaches, the sensors can collect data stably
because of the little impact caused by environmental factors,
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Fig. 1. Similarity between the sign gestures for “Judge” and “Request.”
(a) Judge. (b) Request. (c) IMU signal of gesture “Judge”. (d) IMU signal of
gesture “Request”.

which makes it suitable for large-scale sign language recogni-
tion. However, most of the existing sensor-based sign language
recognition studies are based on small-scale gestures. When the
scale is larger, the number of gestures with similar movements
increases, and recognition difficulties increase sharply.

Hence, in this article, the main focus of our study is accurately
recognizing large-scale gestures. We propose the L-sign, which
deploys a bracelet with built-in sensors (which is the MYO
bracelet in this article). The Chinese universal sign language
is a sign language widely used by Chinese people with hearing
impaired in daily communication [10]. The latest version of the
Chinese universal sign language has 8223 unique sign gestures
comprised of different shapes, the directions of movement, and
orientation. The signer wears a bracelet to perform sign gestures
on the dominant hand (usually the right hand), the bracelet
collects sign gesture signals to identify the sign gestures. To
achieve accurate recognition of the large-scale Chinese universal
sign language, the following two challenges must be addressed.
1) There are similarities between gestures, and the number of
similar gestures increases with the scale of gestures. For exam-
ple, as shown in Fig. 1(a) and (b), the sign gestures of “Judge”
and “Request” have similar hand movements, and both of them
can be divided into two parts. Their first part is both hands
outstretched and palms up, and the difference is that the former’s
hand movements include shaking the palm up and down, while
the latter does not. And their second part is hands back. The
movements of latter include the left hand resting on the right
shoulder and the right hand resting on the left shoulder, while the
movements of former only includes the right hand resting on the
left shoulder. Fig. 1(c) and (d) shows the inertial measurement
unit (which we call IMU) signals corresponding to these two
gestures. It can be seen that the IMU signals corresponding to
these two gestures are similar in shape because of their similar
actions. It is challenging to construct an appropriate model to
recognize gestures. 2) Different people signing different gestures
at various speeds results in high levels of variation, making

it difficult to accurately extract the gestural signals from the
collected signals.

To distinguish similar gestures, we designed a gesture rec-
ognizer that combines the candidate-gesture generator and the
semantic-based voter to obtain the final recognition results
gesture-by-gesture. The candidate gesture generator is based on
a 3-branch convolutional neural network aimed at providing can-
didate gestures. The semantic-based voter is aimed at selecting
the target gesture by scoring the candidate gestures.

To solve the challenge of different individuals signing speeds,
we conducted a lot of experiments. When the user makes ges-
tures, we find that the SEMG signal peaks and the IMU signal
fluctuates frequently. In the nongesture period, the peak value
of the SEMG signal is low, and the fluctuation of the IMU signal
tends to be flat. On this basis, a signal entropy-based forward
and backward matching algorithm was proposed and accurately
separates the gesture signal from the nongesture signal.

The main contributions of this article are summarized as
follows.

1) We propose the signal entropy-based forward and back-
ward matching algorithm to adaptively find the corre-
sponding signal of each gesture.

2) We design a gesture recognizer that comprises a candidate
gesture generator and semantic-based voter to select the
target gesture. The candidate gesture generator provides
candidate gestures, and the semantic-based voter scores
the candidate gestures by using the semantic relationship
of sign gestures.

3) Weutilize an MYO bracelet for acquiring sign gesture data
and evaluate the performance of the L-sign. We expanded
L-sign’s recognition database on 200 common Chinese
sign gestures. Experimental results show that the accuracy
of L-sign is above 90% across different users in different
experimental environments.

The rest of this article is organized as follows. Section II
introduces the existing related work. Section IIl is an overview of
the L-sign. Section IV introduces the gesture signal acquisition
and the signal entropy-based forward and backward matching
algorithm in detail. Section V proposes the L-sign system and
Section VI presents the performance evaluation. Finally, Section
VII concludes this article.

II. RELATED WORKS

The existing human motion recognition studies can be mainly
categorized into two classes: visual-based and sensors-based.

A. Visual-Based Works

Computer vision [5]-[8], [10], [12], [20]-[24] is a convenient
way to recognize human movements. These approaches require
the utilization of cameras or other noninvasive sensors to record
images of user actions. Early visual-based motion recognition
research utilized cameras. Starner et al. [7] utilized a front view
camera and a head-mounted camera to track the users’ hand
movements, and can accurately recognize continuous American
sign language composed of 40 sign gestures. Also using the
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camera for motion recognition, Feriset e al. [20] utilized a mul-
tiflash camera to take flash photos at multiple different locations
to capture the depth information generated during the action to
identify fingerspelling. Norooziet et al. [21] proposed human
pose detection and dynamic human pose estimation methods
based on RGB and 3-D images. Following the development of
camera equipment, some people gradually utilized advanced
camera equipment for research. Shotton et al. [8] proposed
a method that can quickly and accurately utilize single-depth
images to predict the 3-D position of human joints, and de-
sign an intermediate model of human body composition to
transform difficult posture statistic problems into simpler pixel
classification problems. Azari et al. [25] created a 2-D linear
and generalized additive model (GAM) of video-recorded hand
movements to predict expert-evaluated performance on a series
of surgical movement scales. Recent visual-based works also
employed commercial devices. For example, Kinect [9] and
LeapMotion Controller [11] are the most commonly employed
devices in visual-based works. For example, Hamda et al. [22]
proposed a comparative study to recognize six hand gestures in
real-time using the Kinect sensor. Potter et al. [12] presented
an early exploration of the suitability of the leap motion con-
troller for Australian sign language (ASL) recognition. With
the reliability of its camera array, Kinect is also utilized to
recognize Chinese universal sign language. Zhang et al. [10]
recognized Chinese universal sign language using an adaptive
hidden Markov model with self-built datasets based on Kinect.
Gaglio et al. [26] presented a method for recognizing human
activities using Kinect, and combined three different machine
learning techniques, namely K-means clustering, support vector
machines, and hidden Markov models, to detect and classify the
postures involved in performing activities. Although the above
computer-vision methods achieved high accuracy in human
motion recognition, the use of devices may result in the user’s
privacy suffering from invasion.

B. Sensors-Based Works

Sensors-based studies utilize sensors to obtain the charac-
teristics of individuals’ activities. In this kind of work, com-
mon sensor types are SEMG sensor, acceleration sensor, and
gyroscope, for example, [13]-[15], [27]-[35], which can be
utilized to identify human movements. Kang et al. [13] proposed
a new gesture recognition system on the premise of limiting
the number of electromyogram signal (EMG) sensors, in which
three signal channels could classify nine simple gestures. Wu et
al. [14] combined the SEMG sensor and the acceleration sen-
sor to design the American sign language recognition (ASLR)
system to realize smooth communication between the hearing
impaired and the able-bodied, and the recognition rate of the
ASLR system is 95.94% for 40 common gestures. He et al. [15]
compared the performance of single-channel ultrasonic wave
and sEMG signals, and demonstrated their apparent complemen-
tary advantages. Research studies [18], [36], and[37] utilized
acceleration sensors and multilayer perceptron classifiers to
identify human activities. Kuroda et al. [38] utilized 24 inductors

and 9 contact sensors to manufacture their device StrinGlove.
Some recent works [18], [36], [37] can differentiate finger-level
gestures using inertial sensors on wearables. Wang et al. [39]
proposed a digital glove based on the ASL recognition system
developed by the multidimensional hidden Markov model. All
of the above studies utilize special data gloves or wrist-worn
sensors. In recent years, there are studies [19], [40], [41] that
utilize existing smart devices, such as smartwatches to recognize
sign gestures. SignSpeaker [19] is an ASLR system that is de-
ployed on smartwatches together with smartphones. Generally
speaking, the sensors-based method for gesture recognition has
the characteristics of portability, low cost, and stable signal trans-
mission, which is suitable for large-scale Chinese common sign
gesture recognition. In this article, an MYO bracelet integrated
with SEMG sensors and IMU sensors is adopted for gesture
acquisition and recognition.

III. SYSTEM OVERVIEW
A. Data Collection.

For data collection, we collected SEMG and IMU signals from
the MYO bracelet as shown in the blue box in Fig. 2. The L-sign
utilizes a sensor bracelet as its sign language signal acquisition
device. The bracelet includes sensors, batteries, and Bluetooth
modules. The sensor system consists of an accelerometer, a
gyroscope, and eight SEMG signal sensors.

The signal collected by the MYO bracelet is an 18-D vector:
an 8-D sEMG signal, a 4-D gyroscope signal, and a 6-D accel-
eration signal. According to the characteristics of the collected
signals, we divide the 18-D signals into two categories. The
first type is an 8-D SEMG signal. The sEMG signal is the
comprehensive effect of the superficial muscle and nerve trunk
electrical activity on the skin surface, which can reflect the
neuromuscular activity to a certain extent. This kind of signal
has certain typical characteristics. When the muscle tested by the
sEMG signal sensor is under mild load, there are isolated single
low-amplitude movement unit potentials at certain intervals and
frequencies. This is a pure phase. On the contrary, when the
muscle is under heavy load, there is high amplitude potential
with different frequencies and amplitude, and it is difficult
to distinguish the difference and overlap. This is the interfer-
ence phase. Therefore, the system can look for SEMG signal
frequency, amplitude, and other characteristics to describe the
gesture changes. The second category is IMU signal [17] which
includes: 4-D gyroscope signals, 6-D X/Y/Z axis acceleration
signals, and angular velocity signals (where X/Y/Z axis are static
relative to the MYO bracelet). In the MYO bracelet, the sampling
frequency of the sEMG signal is 200 Hz, and the sampling
frequency of the IMU signal is 50 Hz.

We consulted sign language experts from special education
schools and concluded that most people can complete any
Chinese common sign gesture within 4 s. Thus, we set the
acquisition time of a gesture to 4 s. A gesture data file contains
800 lines of sSEMG data and 200 lines of IMU data.
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Fig. 2. L-sign system overview.

B. Data Processing

First, we apply Butterworth filter processing on the collected
gesture signals to remove the high-frequency noise generated by
the equipment and wireless transmission. Then, we propose the
signal entropy-based forward and backward matching algorithm
to segment the processed gesture signal and extract the effective
gesture signal. The data processing is in Section I'V.

C. Gesture Recognition

At this stage, we designed the gesture recognizer including
the semantic-based voter and the candidate-gesture generator to
recognize the target gesture. In Section V, we present the gesture
recognizer.

IV. DATA PROCESSING

This section finds that the signal entropy of the existing col-
lected data significantly changes when the hearing impaired per-
forms sign gestures or not. Based on these changes, we propose a
signal entropy-based forward and backward matching algorithm
to find the corresponding signal of each sign gesture adaptively.
The processing of the SEMG signal and IMU signal collected
by the bracelet mainly includes denoising and determining the
start and end positions of the gesture signal.

First, we utilize a Butterworth filter [42] to filter the collected
signal. The signal collection may be affected by environmental
factors, such as thermal noise generated by the electronic compo-
nents of the acquisition device. Therefore, the collected signal
needs to be filtered. Given that the frequency of background

noise is much higher than that of human gestures, we perform a
Butterworth filtering operation on the collected signal to remove
the signal’s high-frequency part.

Then, the execution time for the same gesture varies among
different signing individuals. Moreover, the same hearing-
impaired user has different execution times for different ges-
tures. Therefore, we need to extract the signal part corresponding
to the sign gesture from the overall signal of a sign gesture col-
lected. Atpresent, most of the cutting algorithms [43]-[46] adopt
the sliding window method to judge the segmentation point,
which have a better recognition effect for the signal with less
severe fluctuation. In this article, aiming at the scene where the
signal contains singular values, we extracted the signal entropy
feature of the signal to reduce the influence of singular value on
the selection of segmentation points and improve the accuracy of
the cutting algorithm. We find that the arm and finger muscles of
signers were tense when signers perform gestures, which is re-
flected in the peak of sSEMG signal and the frequent fluctuation of
IMU signal. On the contrary, when no sign gesture is performed,
both the sSEMG signal peak value and IMU signal fluctuation
tend to be low. Then let us take the IMU signal as an example. The
signal we collected is A = {ay|1 < k < 10,1 <¢ < 200}. In
this equation, ¢ represents the packet number, k represents the
dimension of gesture data, ay, ; represents the amplitude of the
tth packet in the kth dimension. We calculate the contribution
P(ay ) of signal amplitude ay,

Q¢

200

P(ak_’t) = .
t=1 Gkt

ey
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We define the signal entropy of aj ; as

1
H(agt) =logy | =— . (2)
( k?,t) g2 (P(algt))

We calculate the average of the signal entropy of ay, ¢, H(ax ;)
in (1), for dimension k, and obtain the average entropy value of

the signal in time series of ¢th packet

1 Qo

h(t) = BH (ax)] = 75 > H(an.)- 3)

10
k=1

Fig. 3 shows the IMU signal entropy sequence of the gesture
“Handle”. It can be observed that the signal entropy correspond-
ing to the gesture “Handle” is high, while the signal entropy
corresponding to no gesture is low.

The signal entropy-based forward and backward matching
algorithm is shown in Algorithm 1. The terms “forward” and
“backward” in the algorithm refer to traversing the generated sig-
nal entropy sequence, which is described in (3). They determine
the starting point and ending point of the gesture signal accord-
ing to the variance’s difference of the sequence, respectively.
Specifically, the algorithm flow of Algorithm 1 is as follows.
The input of Algorithm 1 is sensor signal s and threshold ¢ for
signal clipping, and the output from Algorithm 1 is the sensor
signal s after clipping and stretching.

First, we calculate the signal entropy described in (3), which is
called h. And we calculate the standard deviation o between two
adjacent variables of the signal entropy sequence h. For example,
for two adjacent variables h[t 4+ 1] and h[t], the variance o|[t] is
expressed as follows:

olt] = V/h[t +1)2 — h[t]? “4)

where 0 <t <len(h) — 1, and len(h) represents the length of
the h. Among that, o[0] is initialized to h[0]. We assign 0 to 6,
which is utilized to control the number of cycles. These can be
seen in lines 1-3.

Then, in lines 4-14, we cut the signal by controlling two
cycles. The first cycle is performed to determine the starting
point of the signal when § = 0. Specifically, we clip the signal
sequence h according to the difference of o sequence. For two

Algorithm 1: Signal Entropy-Based Forward and Backward
Matching Algorithm.

Input: s, 0

Output: s

1: Calculate the signal entropy of s, and obtain the signal

entropy called h;

2: Calculate the standard deviation o of h;
3: 0«0
4: while 8 <1 do
5: t<+1;
6.
7
8

while o[t + 1] — o[t] < ¢ do

t+—t+1;
:ifi <len(h) then
9: s+ s[t : len(s)];
10: if & = 0 then
11: s < s.reverse();
12: 0« 60+1;

13:  Pull the cut data up to the original length;
14: return s
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Fig. 4.  Effect of Algorithm 1 on the IMU signal of gesture “Handle.” (a) The

raw IMU signal of Volunteer 1. (b) The raw IMU signal of Volunteer 2. (c) The
IMU signal processed by Alg. 1 of Volunteer 1. (d) The IMU signal processed
by Alg. 1 of Volunteer 2.

adjacent variables o[t + 1] and o[t], if o[t 4+ 1] — o[t] greater
than §, we set this location as the starting point of the data, and
cut the data in this point. After that, we inverse the data, operate
the cycle again, obtain the data endpoint, and cut the data at that
point.

Last, in line 15, we stretch the cut data to the original
length. We interpolate the updated s with the ratio of difference
w, where len(h) represent the length of raw data.

Through this algorithm, we can cut and stretch the data,
and solve the challenge that different people signing different
gestures at various speeds results in high levels of variation.
Fig. 4 shows the effect of Algorithm 1 on the IMU signal
of the gesture “Handle.” Fig. 4(a) and (b) shows raw IMU
signals corresponding to sign gesture “Handle” performed by
two different volunteers. It can be seen that there are some
nongesture signals at both ends of the signal, and the IMU signals
corresponding to the two volunteers are different due to their
speeds. Fig. 4(c) and (d) shows IMU signals after processing
by Algorithm 1 corresponding to Fig. 4(a) and (b). It can be
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seen that the IMU signals are similar. Thus, Fig. 4 illustrates
that gesture signals can be extracted from the collected signals
by Algorithm 1.

V. GESTURE RECOGNIZER

This section designs a gesture recognizer including a
candidate-gesture generator and a semantic-based voter, which
are utilized to recognize a large volume of sign gestures. We de-
sign a gesture recognizer including a candidate gesture generator
and semantic-based voter.

A. Word Vector Representation of Sign Language

In this section, the t-SNE (t-distributed stochastic neighbor
embedding) algorithm is utilized to convert sign words into
vectors according to their semantics. Based on the frequency
of sign language used by those with hearing impaired in China,
we chose 200 commonly used sign words from the Chinese
universal sign gesture corpus.

First, we apply the CBOW model to embed these sign words.
The CBOW (Continuous Bag-of-Words) model [47]-[49] uti-
lizes the context of a word to predict the word. The noise
contrastive estimation (which we call NCE) loss function [50]
can improve the training efficiency of the model by transforming
the classification problem into a general logistic regression task.
And the NCE loss function is often used in the training of the
CBOW model. In the training process of the CBOW model, a
noise dataset is constructed, and we train the CBOW model to
learn the difference between real data and noise data by utilizing
the NCE loss function. Thus, the semantic features of each word
in the corpus will be learned by the CBOW model. By training
the CBOW model, we can store the semantic information of
every word in the whole corpus in the form of word-embedded
representations (called word vectors). In our work, we train the
CBOW model to obtain the word vectors of these 200 sign words.

The CBOW model has three layers in total, namely, the input
layer, the hidden layer, and the output layer. Since the CBOW
model is used to predict a word from its context, the final output
of the CBOW model is the probability of the current word. After
training, the values of the hidden layer in the model are regarded
as the word embedding representations of these words. Let V'
represents these 200 word vectors, which is given by

V = {v,]1 < i < 200} 5)

where v; = (v;1, V42, - - . , Ui00) is a200-D vector corresponding
to a sign word.

We then utilize the t-SNE algorithm to reduce the dimension
of the sign words. Compared with other dimensionality reduc-
tion algorithms, the t-SNE algorithm [51] can effectively solve
the problem of crowding of data points after dimensionality
reduction according to the characteristics of t-distribution [52].

In this article, these 200 sign word vectors are arranged from
high to low according to their usage frequency. We add a weight
1, to each word vector v; and define it as follows:
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Fig. 5. Sign words vector distribution.

where p; is the usage frequency of each sign word in the
corpus [53], [54]. We then utilize Kullback-Leibler divergence
(which we call KL distance) as our loss function for optimization
and utilize the stochastic gradient descent algorithm to train the
t-SNE model. The word vector v; can be reduced dimension as
v; = (vjg, Vig)-

As shown in Fig. 5, it is the result of the t-SNE reduction to
2 dimensions for the word vectors of 200 commonly used sign
gestures.

The words after dimension reduction constitute a semantic
space, where each point represents a sign gesture. As can be
seen from Fig. 5, the two sign gestures “judge” and “request,”
which originally had very similar gestures, are now located in
two distant locations in Fig. 5. Thus, we achieve the effect of
distinction.

B. Clustering Analysis With Multilayer K-Means Algorithm

To obtain a clustering with multilayer word structure, we
propose a multilayer k-means algorithm to perform clustering
analysis on the word vectors after dimensionality reduction.

We first define the semantic distance between sign words
to express the semantic relationship between sign words. For
any two word vectors v; and v} after dimensionality reduction
in Section V-B, their semantic distance d(v;, v}) is defined as
follows:

d(vv) = \JWh = v + Wy =) (D)
where v} = (v}, vjy) and v; = (v}, v%5) (1 < 4,5 < 200). The
closer the two points are, the smaller their semantic distance,
which indicates that their semantic relationship is closer and
vice versa. As shown in Fig. 5, the semantic distance between
the two similar gestures “judge” and “request” is 25.346, which
means their semantics are greatly different from one another.

Moreover, we present the multilayer k-means algorithm,
whose main idea is that running d times k-means algorithm
which is utilized to each class obtained from the last times on the
word vectors. Thus, a new class number for each word vector in
each time is appended. And Fig. 6 shows the flow chart of the
multilayer k-means algorithm. The specific steps as follows: In
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Input: word
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m=1
v

Used k-means algorithm to classify the word
vectors with the same label in the (m-1)th loop,
and obtain /""(1<i<200), for word vector v
Append /" to ['*...]""

Fig. 6. Flowchart of multilayer k-means algorithm.

step (1), we initialize the label of word vector vg (1 <4 <200)
as 19 = 0. In step (2), we utilize k-means algorithm to classify
these word vectors with the same label in the (m — 1)th loop,
and obtain class number [" for word vector v}. At same time,
we append [ to [}1Z ... 17!, thus v]’s new label is [}(2 ... ™.
In step (3), we compare the current number of cycles m and d
to determine whether to terminate the cycle.

After the multilayer k-means algorithm, any sign word vector
vl is attached with label I} ...1¢, and the d-layer sign word
structure can be obtained. We determine the value of d according
to the number of sign words. d is set to be 1 when the number
of sign words is small, for example, 100; d is set to be 2 when
the number of sign words is large, for example, the number is
more than 100 and less than 300. We select d = 2, k = 4 in this
article, and Fig. 7 shows the 2-layer word structure generated
by multilayer k-means algorithm. As shown in Fig. 7, 200 sign
words are divided into 4 classes by the blue curve in the first
cycle, and each classes is divided into 4 smaller classes by the
red dotted line in the second cycle.

C. Gesture Recognizer Including a Candidate-Gesture
Generator and Semantic-Based Voter

This section designs a gesture recognizer including a
candidate-gesture generator and semantic-based voter to rec-
ognize sign gestures.

1) Candidate-Gesture Generator: We  construct  a
3-branches 1-D convolution neural network (CNN) to construct
the framework of the candidate-gesture generator, as shown in

Fig. 7. Classification with two-layer word structure.
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Fig. 8. Candidate-gesture generator.

Fig. 8. Compared with the LSTM neural network, the 1-D CNN
can accurately extract the local information of the signals using
fewer parameters. The inputs of the three branches are SEMG
signal, gyroscope quaternion, and X, Y, Z three-axis velocity
related signals (X, Y, Z three-axis acceleration and X, Y, Z
three-axis angular velocity) after filtered and cut. For each sign
gesture, the sizes of them are 800 x 8, 200 x 3, and 200 x 7,
respectively. For these three branches, the 1-D convolution
kernel sizes are 1 x 8, 1 x 3, and 1 x 7, respectively. Through
1-D convolution operation, we can reshape signals with different
sizes to the same size. Lastly, the candidate-gesture generator
provides the M candidate gestures yq, ..., yas obtained from
the softmax layer, and their probabilities are p1, ..., pas.

2) Semantic-Based Voter: Let x be the last gesture of the
current sentence, which has been recognized by the gesture
recognizer. First, it calculate the semantic distance d(y;, z)(1 <
Jj < M) between candidate gesture y; with previous gesture
based on (7). Then, it scores gesture 3/; based on previous gesture
a’s label ;17 and candidate gesture y;’s label I, I} as follows:

pj + Ad(y;, )
pj + Md(y;, ) + @)
pj + )»(d(yj,$) + a4+ B)

1 _ g1 451 _ 2
T
L=l £

1 1
AL

score(y;) =

®)

where A(A < 0), a(o > 0) and (5 > 0) are all empirical val-
ues, and we obtain their values by grid search in the experiment.
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Fig.9. Performance of the sign gesture for “Hello.” (a) Initial state. (b) Action
1. (c) Action 2.

Lastly, it selects the target gesture corresponding to the highest
score among score(y;)(1 < j < M). And it should be noted
that we need to retrain the semantic-based voter for these newly
selected sign words when other sign words are selected.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of L-sign system pro-
posed in this article. This experiment is realized using an MYO
bracelet and a PC. As a signal acquisition device, the bracelet
collects gesture signals at the speed of 100 data packets/second
and transmits them to a PC. The PC works as the receiver end
of the signal, and carries out signal processing and sign gesture
recognition processes. The PC is equipped with an Intel Core 19-
10900 K processor, 64 GB of memory, an Nvidia GeForce RTX
3090 graphics card, 24 GB graphics memory, and a preinstalled
Ubuntu 18.04 operating system. The three parameters A, «, and
[ are empirical values obtained by the grid search method in
the experiment. Here, A = —0.001, « = 0.2 and § = 0.1. In the
training process, batch size of the candidate-gesture generator
is set as 512. Adam optimizer is used to optimize the network
parameters. The learning rate is 0.001 and 1000 epochs are used
to train.

In this experiment, we have 12 volunteers between 18 and 40
years old, which include 6 university students (3 males and 3
females), 2 hearing-impaired people (1 male and 1 female), and
4 Chinese sign language experts (2 males and 2 females). Before
the experiments, we require them to learn all the selected 200
Chinese universal sign gestures used in this experiment, and they
can accurately execute them through 8 hours of gesture training.
Each volunteer performs each sign gesture 20 times and a total
of 48 000 samples are collected.

In this article, the volunteers are right-handed. And we stip-
ulated the correct wearing posture of the bracelet. The bracelet
was worn at the uppermost third of the right forearm, and the
logo of the bracelet was facing the middle finger. In Fig. 9, a
volunteer performs the sign gesture for “Hello.” Fig. 9(a) is the
initial state, and Fig. 9(b) and (c) shows the two continuous
actions including in the sign gesture “Hello”.

A. Comparison With Existing Methods

1) Compare With Baseline: In this section, we compare the
recognition performance of our system with an LSTM neural
network [38], [55], [56] and a convolutional 3-D model (called

C3D) [57]-[60], and test their recognition performance with dif-
ferent sign vocabulary sizes. We perform leave-one-volunteer-
out cross-validation to validate their capacity. The training is
done on the gesture samples of 11 volunteers from the 12
volunteers and the rest one is left out for testing. For different
vocabulary sizes of sign gesture, the above is repeated 12 times
for calculating the average accuracy while changing the test
part one-by-one until testing has been done on all the datasets.
The datasets are processed by Butterworth filter, then cut and
stretched in the proposed Algorithm 1. Specifically, we remove
semantic-based voter in the L-sign and replaced the 3-branches
1-D convolutional neural network with an LSTM neural network
and C3D in the candidate-gesture generator, respectively. The
network structures and the inputs of LSTM neural network and
C3D are as follows.

In LSTM neural network [56], the number of neural network
layers and neurons in each layer of LSTM are 3 and 512, respec-
tively. For the requirement in LSTM neural network, the SEMG
signals and IMU signals need to be fused and reshaped to the
same size as follows. Since the sampling frequency of the SEMG
signals is 4 times that of the IMU signals, we perform interpola-
tion processing on the latter and scale it to the same length as the
former. For every two IMU signals x; and ;11 (1 <t < 200),
we insert 3 frames of IMU signals ay, ay, as, which are
givenby ay, = 0.75z; + 0.25x441, a4y = 0.5x4 + 0.5x441,and
aym = 0.25x; + 0.75244 1, respectively. Thus, the interpolated
IMU signals are obtained as . . . , T¢, Gk, Gty Gty Tigls - - - - WE
then splice the SEMG signals and the IMU signals to the size of
800 x 18 according to their minimum dimension.

With reference to works [58], [60], we design the structure of
the C3D. There are five layers which include 3-D convolutional
layer, 3-D pooling layer, fatten layer, and dense layer in C3D.
The sizes of 3-D convolutional kernels and 3-D pooling are
2x2x1and 2 x 1 x 1, respectively. For sSEMG signals, we
combine 32 data packets into one and add the dimension of
height. Thus, we can obtain the SEMG signals with size of
200 x 1 x 1 x 32. For IMU signals, in order to align them
with the dimension of SEMG signals, we add the dimension
of height to them and obtain the IMU signals with size of
200 x 1 x 1 x 10. Moreover, we fuse the SEMG signals and the
IMU signals together and obtain the sign gesture signals with
size of 200 x 1 x 1 x 42 as the inputting signals of C3D.

The experimental results shown in Fig. 10 illustrate that
L-sign has the best recognition performance among the three
methods. The average accuracies of the LSTM neural net-
work and the C3D decline obviously when the number of
sign gestures exceeds 80, and the average accuracy of LSTM
neural network decreases faster than that of C3D. When the
number of sign gestures reaches 200, the LSTM neural net-
work and the C3D are unable to perform gesture recognition
while the average accuracy of L-sign still remains at 90.05%.
The reason is that the L-sign considers both the sign ges-
ture’s signal and semantics, which is effective for recognizing
sign gestures with similar actions in large vocabulary sign
gestures.

2) Compare With State of Art: In this section, a comparative
experiment with the SignSpeaker [19] is conducted to evaluate
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Fig. 10. Comparison with baseline.
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Fig. 11.  Comparison with SOTA.

the recognition performance of L-sign. The leave-one-volunteer-
out cross-validation method mentioned above is adopted in this
experiment.

The experimental results shown in Fig. 11 illustrates that the
SignSpeaker and the L-sign show good recognition performance
and the recognition rate of SignSpeaker is slightly lower than
that of L-sign when the vocabulary of sign gestures is small. This
experimental result indicates that the L-sign is more suitable for
Chinese sign gestures recognition. When the vocabulary of sign
gestures increases, the recognition performance of SignSpeaker
decreases while that of L-sign maintains a high level. The L-sign
improves the average accuracy by 34% over the SignSpeaker.
The experimental results show that L-sign is very effective for
large-vocabulary Chinese sign gestures.

3) Compare With the Signal Cutting Algorithm in State of Art:
To verify the effect of the signal entropy-based forward and back-
ward matching algorithm, we conduct a comparative experiment
with the signal segmentation algorithm in the state of art. Zhang
et al. [43] proposed the signal segmentation algorithm based
on moving averaged energy stream (called EMA) to segment
signals in their works. We replace the signal entropy-based for-
ward and backward matching algorithm in L-sign with Zhang’s
algorithm and compare their results to verify the effectiveness of
our algorithm. This experiment is implemented on the collected
dataset of 200 sign gestures. The average accuracy is obtained
with leave-one-volunteer-out cross-validation method.

TABLE I
COMPARE WITH SIGNAL CUTTING ALGORITHM IN STATE OF ART

Alg. 1 in L-sign
90.05%

Zhang’s algorithm
82.54%

TABLE I
RECOGNITION RESULTS OF SIMILAR GESTURES

Sign gestures  L-sign LSTM
Tourism 90.01%  65.21%
Judge 90.32%  21.45%
Everybody 91.04%  20.36%
Doctor 90.15%  18.65%
Morning 90.00%  23.64%
Afternoon 90.14%  24.01%
Hello 9143%  20.12%

The experimental results are shown in Table I. As can be seen
from Table I, our algorithm is more conducive than Zhang’s
algorithm to improve the recognition performance of L-sign.

The reason has two points. On the one hand, the signal entropy
can reduce the influence of singular value on the cutting points
selection. On the other hand, our algorithm correctly determines
the starting point and ending point of the signal from the forward
direction and the reverse direction, respectively.

B. Recognition Reliability

To verify the reliability of the L-sign system, we randomly
select the sample of 7 sign gestures from the collected 200 sign
gesture dataset, which were poorly recognized by the LSTM
neural network, and then utilize the L-sign for recognition
purposes.

The experimental results are shown in Table II, and we can
see that the average accuracy of L-sign remains over 90%, while
the accuracy of the LSTM neural network at most 65.21%.

The reason is that the proposed neural network of L-sign is
based on sign gestures themselves, as well as their semantic
structures. Therefore, the experimental results show that our
model can greatly improve the low average accuracy of the
existing methods utilized in similar sign gestures.

C. Ablation Comparison Experiment

To verify the effectiveness of signal segmented of Algorithm
1 and semantic-based voter of L-sign, we conduct the ablation
comparison experiment based on the collected dataset of 200
sign gestures. The L-sign system is trained with the leave-
one-volunteer-out cross-validation method mentioned in VI-A1.
Thus, there are 12 tests for 12 volunteers.

1) Without Signal Segmented: To verify the effectiveness of
Algorithm 1, we input the raw signal without segment and the
segmented signal by Algorithm 1 to the L-sign for training and
recognition, respectively. Algorithm 1 can accurately remove
the signals corresponding to nongesture actions at both ends of
the data, then shrink the gesture signals to the same length.
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TABLE III
EXPERIMENTS ON THE EFFECTIVENESS OF SEGMENTATION

Signal after segmentation  raw signal
90.05% 50.23%
TABLE IV

EXPERIMENTS ON THE EFFECTIVENESS OF SEMANTIC-BASED VOTER

Without semantic-based voter
85.26%

L-sign
90.05%

The recognition results shown in Table III illustrate that the
accuracy of using the raw signal is lower apparently than that of
using the segmented signal in Section IV, which illustrates that
the proposed Algorithm 1 is useful for improving the recognition
performance of gesture recognizer. The reason is that the sign
gesture signals extracted from the collected signals by Algorithm
1 are of great help to improve the recognition performance of
L-sign.

2) Without Semantic-Based Voter: To explore the influence
of the semantic-based voter module on gesture recognizer, we
dismantle the semantic-based voter module and only utilize the
candidate-gesture generator model. In test step, we choose the
sign gesture with the highest corresponding probability as the
output of L-sign after the predicted probability of each sign
gesture is generated by candidate-gesture generator.

The experimental results are shown in Table IV. From Ta-
ble IV, we can find that the semantic-based voter can improve
the recognition performance of L-sign. We believe that the
semantic information of sign gestures can be introduced by
semantic-based voter to assist L-sign for target judging.

D. Independency Judgment

In this section, we mainly evaluate the independence of L-sign
in terms of the different individuals and experimental scenarios.

1) Individual Independence: To explore the individual gen-
eralization of L-sign for hearing-impaired individuals whose
gesture data are not collected, we conduct the individual inde-
pendence experiment. We select other 5 volunteers who trained
for 8 hours to collect the 200 sign gestures mentioned above
in the same experimental scenarios. Each volunteer performs
each sign gesture 10 times and 10 000 samples are collected.
We evaluate the performance of L-sign for the newly collected
sign gesture samples and calculate the average accuracy of each
volunteer’s sign gestures without training L-sign.

Table V shows the experimental results that the L-sign has a
high recognition rate for data collected from these five volun-
teers. It illustrates that the L-sign has user independence and can
help hearing-impaired people’s daily communication.

2) Experimental Scenarios Independence: To evaluate the
recognition effect of L-sign in different scenarios, we conduct
experiments in line-of-sight (LOS) and no-line-of-sight (NLOS)
scenarios. Fig. 12(a) shows the LOS scenario, in which the
volunteer carries out sign gestures with the bracelet about 8 m
away from the PC, without any obstacle between the subject
and the PC. Fig. 12(b) shows the NLOS scenario, which is the

TABLE V
EXPERIMENTAL RESULTS OF USER INDEPENDENCE

Voulnteers Accuracy
No. 1 90.20%
No. 2 90.05%
No. 3 90.30%
No. 4 91.00%
No. 5 90.40%
Grand mean 90.05%
L G R
a N L B B

(a)

o’ ¢

(b)

Fig. 12.
Sight.

Different experimental scenarios. (a) Line-of-Sight. (b) Non-Line-of-

TABLE VI
EXPERIMENTAL RESULT ON LOS AND NLOS

Experimental scenarios
LOS
NLOS

Average accuracy
90.05%
89.81%

same as LOS except that there is a wall made of bricks between
the volunteer and the PC. In this experiment, the 5 volunteers
are randomly selected from those 12 volunteers to collect the
200 sign gestures in NLOS scenarios. Each volunteer performs
each sign gesture 10 times and the 10 000 samples are collected.
We evaluate the performance of L-sign in NLOS scenarios by
inputting these samples into L-sign in the test step.

The experimental results shown in Table VI indicate that
the L-sign can achieve high recognition performance in both
scenarios.

We believe there are two reasons. The first is that the bracelet
transmits the sign signal to the PC via Bluetooth, which offers
a greater anti-interference function. The second is that the L-
sign gains robustness by simultaneously considering the sign
gesture’s signal and semantics through the gesture recognizer.
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TABLE VII
EXPERIMENTAL RESULTS OF SIGN GESTURES EXTENSION

Number of sign gestures  Accuracy
200 90.05%
210 89.01%
220 88.95%
230 88.34%
240 88.15%
250 88.01%

E. Sign Gestures Extension Experiment

To investigate the impact of the number of sign gestures on
the recognition performance of L-sign, we increase the number
of sign gestures from 200 to 250. According to the use fre-
quency of gesture, we select 50 commonly used gestures that
are not included in the above 200 gestures and add them to
the vocabulary of experimental gestures. The newly selected
50 common Chinese sign gestures are collected by the same
volunteers mentioned in Section VI. Each sign gesture is col-
lected 20 times. Thus, 12 000 samples are collected. By now,
the 250 sign gesture dataset are obtained. In this experiment, the
leave-one-volunteer-out cross-validation method is performed
to validate the capacity of L-sign. The test is repeated 12 times
for calculating the average accuracy when the number of sign
gestures increases from 200 to 250.

Table VII shows the average accuracy of L-sign when the sign
gesture vocabulary is from 200 to 250. The experimental result
indicates that the average accuracy of L-sign decreases slightly
with the increase of sign gesture vocabulary. The reason is that
the number of similar sign gestures increases with the scale of
sign gestures. However, L-sign still maintains a high recognition
performance even if the sign gesture vocabulary increases to 250.

VII. CONCLUSION

In this article, we present the L-sign system to recognize
the large vocabulary of the Chinese universal sign gestures for
the hearing impaired with a bracelet. In the data processing
stage, this article proposes a signal entropy-based forward and
backward matching algorithm to extract sign gesture signals.
A gesture recognizer including a semantic-based voter and
candidate-gesture generator is designed to recognize gestures.
The candidate-gesture generator is designed on a 3-branch CNN
to select the M candidate sign gestures. The semantic-based
voter aims to score the candidate gestures based on the proposed
semantic distance between the last gesture and the candidate
gesture. Among them, the labels are obtained from the proposed
multilayer k-means algorithm, and the target gesture is chosen
based on the scores. The experimental results of 200 commonly
used Chinese universal sign gestures show that the average
accuracy of L-sign is over 90% even for sign gestures recognized
difficultly by other methods.

In future research, we extend the L-sign system to all Chinese
sign gestures and recognize the continuous sign gestures in real-
time. The challenge is how to segment a series of continuous sign
gesture signals into some discrete gesture signals. By observing
the sSEMG signals of a series of continuous gestures, we find
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Fig. 13.  Spectrum of continuous sign gesture signals.

that there are a lot of “zeros” generated in SEMG signals when
signers switch from one gesture to the next. Fig. 13 shows the
spectrum of continuous sign gesture signals: There is a flower
shop next to a vegetable market. The dark part of Fig. 11 shows
more “zeros” in the signal, while the bright part shows fewer
“zeros” in the signal. Thus, the discrete sign gesture signals can
be extracted from it. Based on this phenomenon, we analyze the
distribution of zero in gesture signals and utilize them as the
basis for classifying sign gestures.
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